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Synthetic Fleet Generation and Vehicle Assignment to 
Synthetic Households for Regional and Sub-regional 
Sustainability Analysis 

EXECUTIVE SUMMARY 

Current regional-scale and sub-regional-scale energy use and emissions models (and 
downstream modeling applications, such as microscale dispersion modeling) often use travel 
demand model outputs as impact assessment model inputs, because large-scale on-road 
activity and household trip data are difficult and expensive to collect. Although existing travel 
demand models generate synthetic households that are designed to match sub-regional 
distributions of household demographics for predicting vehicle activity, these models do not 
currently integrate detailed vehicle fleet specifications. Hence, vehicle class and model year 
information is not currently assigned to individual trips by the regional model. This means that 
travel demand models do not account for the differences in fleet composition by time of day 
and when transportation network traffic volumes and operating conditions are predicted. The 
integration of detailed vehicle information into the travel demand modeling process will 
facilitate the modeling of energy use and emissions at much higher spatial and temporal 
resolution. This research developed a modeling framework to integrate travel demand model 
outputs, licensed household marketing demographics data, and vehicle registration data to 
generate sub-region synthetic fleets and assign these vehicles to synthetic households in travel 
demand models and to each model-predicted household tour (connected series of trips). 

The study focused on developing a generator for synthetic households and fleets by combining 
demographic data from ARC's ABM2020 model and Epsilon 2022 household data with regional 
vehicle data licensed from the R.L. Polk® Vehicle Registration Database. The synthetic fleet was 
generated by pairing the household locations (TAZ vs. longitude and latitude, and Epsilon 
household addresses vs. Polk® vehicle registration addresses), and a variety of demographic 
attributes (household size, number of children, number of vehicles, and household income). A 
case study was then carried out in metro Atlanta, Georgia, where emission results predicted 
using the synthetic fleet were compared to those from the traditional county-based fleet 
approach, where average emission rates from the regional fleet are applied to each trip by 
average speed and facility type. The case study compared these results across the 21+ million 
ABM-modeled daily trips. 

Using Monte Carlo analysis across 1,000 primary iterations, the team derived average metrics 
of fleet ownership, VMT distributions, emissions, and differences across the two scenarios. The 
stability of these metrics was further verified using Bootstrap techniques. The synthetic fleet 
generation generated an average of 3,8 million vehicles for metro Atlanta. The tight 95% CI 
range spans from 3,836,204 to 3,836,965 vehicles, underscoring the stability of the synthetic 
fleet generation process. However, a deeper dive into vehicle ownership by type and age 
revealed an amplified representation of older vehicles in the synthetic fleet, even when 
juxtaposed with the original Polk® data. Hence, bias in licensed data associated with vehicle 
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ownership toward older vehicles will generate a multiplicative bias effect in energy use and 
emissions predictions, given the non-linear relationship between fleet age and on-road 
emission rates. The observations in this report underscore the need for using unbiased vehicle 
ownership and use data, which requires access to the state-managed vehicle registration 
database and smog check mileage accrual rates, to avoid using biased licensed data in synthetic 
household and fleet generators. 

The temporal emission trends, as expected, aligned with traffic volume and speed variations, 
especially during peak hours. White-collar work trips emerged as the predominant contributors 
to CO emissions, followed by blue-collar work trips. Interestingly, emissions from discretionary 
and maintenance activities were very similar, both slightly less than the work trips. However, 
given the bias noted above in licensed vehicle registration data, it is possible that these results 
may not hold once unbiased fleet registration data are obtained and employed in future 
analyses (older vehicles tend to be correlated with use in lower income households). 

As expected, the households that did not own vehicles emitted the least CO emissions, while 
high-income single households and moderate-income working households exhibited higher 
emissions. The most pronounced emissions were observed in groups with significant commute 
demands using older vehicles due to what appears to be less frequent vehicle turnover. 

A spatial analysis of CO emissions differences between the two scenarios revealed downtown 
links to have smaller differences, while exurban links exhibited larger variability. Specific areas 
like the vicinity of Six Flags Georgia consistently underestimated emissions across all hours, and 
major northern interstates, including I-75, I-85, GA-400, and parts of I-285, displayed a 
consistent trend of overestimation. Such spatial biases underscore the need for caution when 
applying county-based emission rates to individual roadway links. 
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1. Overview 

Travel demand model outputs are frequently utilized as inputs to energy and environmental 
sustainability analyses, and fleet composition is often addressed as a post-processing activity 
(assigning source type and vehicle age distributions to roadway links after travel demand model 
runs are finished). The development of a comprehensive modeling framework that integrates 
synthetic fleet generation directly into travel demand models offers an opportunity to enhance 
regional and sub-regional energy and emissions modeling by ensuring that appropriate fleets 
are assigned to network corridors based upon household travel choices (i.e., ensuring that 
synthetic household travel activities and their detailed trip characteristics are assigned to 
appropriate vehicles). 

It is important for project-level emission assessment to represent the traffic operations 
(including fleet composition) at the time and location of interest, as a small change in model 
inputs can lead to large changes in energy and emissions predictions, given the variability and 
sensitivities of emission rates across source types and model years. Synthetic household and 
fleet data play a crucial role in large-scale emission modeling by better capturing the spatial and 
temporal variability of on-road fleet compositions, and helping to mitigate uncertainty 
associated with using aggregated input (Lu, et al., 2021; Granell, et al., 2002; Bachman, et al., 
1998). 

The synthetic fleet used in this study was developed using a “bottom-up” methodology, where 
vehicles in the fleet were assigned to households based upon household demographic data. 
Then, each vehicle-tour (and therefore trips within the tour) was assigned a household vehicle 
and predicted emissions were aggregated by trip, individual, and household level. The use of 
synthetic household and fleet data can also facilitate high-resolution equity analyses by 
aggregating energy use and emissions across demographic subgroups. These energy use and 
emission results can be further integrated with other equity analyses that employ travel 
demand model outputs, such as pollutant concentration exposure modeling. 

This research aimed to develop a synthetic fleet generator and assignment system by analyzing 
and combining data from various sources: 1) licensed household-level demographic data from 
Epsilon®, Inc. that includes detailed information on household and individual demographics 
along with geographic coordinates (longitudes and latitudes); 2) vehicle registration data 
licensed from Polk® that provides vehicle make, model, and model year information (used to 
develop source type and vehicle age distributions) along with registration addresses (that could 
be paired with Epsilon® household addresses); 3) demographic information at the household 
level that is embedded in the Atlanta Regional Commission’s (ARC’s) activity-based travel 
demand model (ABM); and 4) ABM model outputs for trip purpose and retained trip path data. 
This comprehensive system generates a high-resolution synthetic fleet by pairing households 
using demographic characteristics and by allocating synthetic vehicles to each tour (trip chain). 

A previously-developed regional emission modeling framework was used to assess trip-level 
and household-level emissions of Carbon Monoxide (CO) (Liu, et al., 2019; Xu, et al., 2018a; Xu, 
et al., 2018b). The mean and 95% confidence intervals were predicted by employing Monte 
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Carlo simulations and Bootstrap techniques on the synthetic fleet, and the results were 
compared against the emissions derived from sub-regional (county-based) results that are 
based on average emission rates by source type and by model year, which are extracted from 
the scenario of synthetic fleet. A separate stand-alone research paper was published by the 
research team that proposed a methodological model to assess the potential of electric vehicle 
(EV) penetration and corresponding reduction in energy use and emissions (Dai, et. al, 2022).  
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2. Data and Methodology 

The synthetic household and fleet generator pairs demographic and vehicle information from 
various sources, including the Activity-Based Travel Demand Model (ABM) from the Atlanta 
Regional Commission (ARC), the commercial licensed household demographic dataset of 
Epsilon®, Inc., and licensed vehicle registration database from R.L. Polk® Company. Epsilon® 
vehicle ownership data was used in a cross comparison for 9+ year-old vehicles. 

The ABM was configured to retain the modeled travel paths of every household trip (more than 
21 million trips) along the 149,967-roadway links modeled in the metro Atlanta transportation 
network. The resulting emissions from these modeled trips were estimated using the Georgia 
Tech MOVES-Matrix implementation of the EPA MOtor Vehicle Emission Simulator (MOVES) 
2014b emission rate model. The resulting link-level CO emissions were compared between two 
scenarios: 1) a link-specific fleet, using the synthetic fleet given the driver/household 
demographics of the trips expected to traverse that link, given the ABM trip outputs; and 2) 
link-by-link emission inventory developed by county, using fleet average emission rates (derived 
from the synthetic fleet scenario) weighted by household VMT. The Epsilon® households were 
first paired with Polk® vehicle information based on household address vs. registration address 
information, and a two-stage randomized pairing and allocation process was developed to 
associate: 1) the ABM households with the Epsilon®-Polk® households, and 2) vehicle 
information (source type and model year) with ABM trips. A Monte Carlo simulation and 
Bootstrap techniques were employed for 1,000 random draws, to derive the mean and 
variances of the fleet and emissions results. The emissions per person and per households 
derived from the synthetic fleet generation process were compared across the demographic 
groups, and the link-by-link emission inventory by hour was compared against the results that 
were based on county-level average emission rates. 

2.1 Individual/Household Travel Behavior and the Roadway Network 

The activity-based travel demand model (ABM) by Atlanta Regional Commission (ARC) was used 
in this study to provide the roadway network and the travel behavior at the households and 
individual levels using ABM path retention (Zhao, 2021; Zhao, et al., 2019; Zhao and Guensler, 
2019). The specific version employed was the ABM2020-TIPA1-2020, which is same version 
used by ARC staff for the Atlanta Metropolitan Transportation Improvement Program (TIP), for 
calendar year 2020, modeled with the ARC planning assumptions for the transportation 
network, land use, and household demographics for calendar year 2020 (Zhao, 2021). The 
ABM2020-TIPA1-2020 model data is available in geodatabase format from the ARC and includes 
a links layer and a nodes layer. In total, the model network for this ARC scenario and modeling 
year includes 149,967 links and 66,418 unique nodes. 

The team applied the path retention method that allows modelers to retain the paths between 
origin and destination predicted by the ABM’s internal Franke-Wolfe algorithms. With path 
retention, model-predicted link-by-link vehicle traverses through the road network are 
available for analysis, and 21.3 million model-predicted household trips were retained. 
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2.2 Demographic and Vehicle Registration Information 

Three datasets that were used in developing the synthetic fleet generator in this study as 
follows. The ABM2020 and Epsilon® 2022 data provided demographic information at both the 
individual and household level, and the R.L. Polk® Vehicle Registration Data provided vehicle 
information that can be paired with demographic data, by allocating vehicles to registration 
addresses. 

• ABM2020: The ABM provides the demographic information at the individual and 
household level of 2.39 million households which couples with the household trip 
information. 

• Epsilon® 2022 Demographic Data: The commercial licensed dataset of Epsilon® (version 
2022) provides the household and individual demographic information of 3.21 million 
households in metro Atlanta.  

• R.L. Polk® Vehicle Registration Data 2022: These data provide the vehicle makes, model 
and model year information of 1.35 million vehicles in metro Atlanta. These data were 
found to have significant limitations as discussed in Section 2.2.2 below. 

2.2.1. ABM Demographic Information 

The ABM retains household demographic data and person assignment for each trip, which 
includes household size, number of workers, annual household income, number of vehicles, 
household traffic analysis zones (TAZ), etc. for the 2.39 million households modeled in the 
travel demand model. ABM also provides demographic information for every person in each 
household, which includes age, gender, worker type (full-time worker, university student, non-
worker, etc.), etc., and the team paired the person information with the household data to 
derive number of children and whether the household was a single-parent family with children. 

The 16 demographic groups used in this study was consistent with the previous study as 
definitions that are both mutually exclusive and collectively exhaustive (Zhao, 2021; Zhao, et al., 
2019; Zhao and Guensler, 2019). A breakdown of the individual group characteristics is 
presented in Table 1. These groupings were previously established through a collaboration 
between U.S. Department of Energy staff and Georgia Tech researchers for the 2018 ARPA-E 
TRANSNET-Atlanta project for equity impact assessment (Zhao, 2021; Zhao, et al., 2019; Zhao 
and Guensler, 2019). These mutually exclusive groups include lifecycle stages, but were also 
specifically designed to reveal transportation mobility and accessibility impacts on households 
that own no vehicles, households with very low-income households, and single parent 
households with children (i.e., severe constraints to mobility and accessibility). 

The households were classified first by vehicle ownership (see Zhao, 2021 for more information 
on grouping methods). Households with no vehicles were placed into Group #1 (households 
with no vehicles). The households with at least one vehicle were then examined and divided 
based on annual income; those below the threshold of $25,000 were classified as Group #2 
(low-income households). The remaining households were then categorized based on 
household size (number of adults and children), and further classified based on number of 
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workers, presence of children, and whether the household includes a single parent with 
children (for households with three or more persons only). The one-person households were 
placed into Group #3 (non-working households with annual income lower than $60,000), Group 
#4 (working households with annual income lower than $60,000), and Group #5 (annual income 
more than $60,000). Households with two or more persons were examined by annual income 
and categorized into intervals of $25,000 to $60,000 (Groups #6, #7, #8, and #9), $60,000 to 
$120,000 (Groups #10, #11, #12, #13, and #14), and $120,000 or more (Groups #15 and #16). 
For households with annual income lower than $60,000 (and with two or more persons), the 
non-working households were classified into Group #6, and two-person working households 
were classified into Group #7. Then, the working households with three or more persons were 
classified based on whether they are single parent with children (Group #8) or without children 
(Group #9). For the households with annual income from $60,000 to $120,000, the households 
with either no or one worker were classified based on whether they have at least one kid 
(Group #10) or not (Group #11), and the two-person households with two workers were 
classified into Group #12. The three-person households with at least two workers were 
classified into Group #13, and those households with four or more persons and with at least 
two workers were classified into Group #14. The households with annual income of $120,000 or 
more were classified into Group #15 (with no or one worker) and Group #16 (with two or more 
workers). The classifications result in each household being placed into one and only one group 
(exclusive and exhaustive classification). 

It is worth noting that although 6.3% of the households in the model do not own any vehicles, 
the ABM still predicts some household vehicle trips (e.g., by ride-sharing services, taxis, 
rideshare passenger, etc.). These households were treated as special cases in this study and 
were not allocated in the emissions comparison (see the following sections).
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Table 1. Definition of the 16 Demographic Groups based on ABM household information. 

Group # 
Own 

Vehicles 
Low 

Income 
HH Size Annual Income Workers Vehicles 

With 
Kid(s) 

Single Parent 
w/kid(s) 

Household 
Counts 

Percentage 

1 No Any Any Any Any 0 Any Any 150,300 6.3% 
2 Yes Yes Any $0 - $25k Any 1+ Any Any 289,947 12.1% 
3 Yes No 1 $25k - $60k 0 1+ Any Any 59,005 2.5% 
4 Yes No 1 $25k - $60k 1 1+ Any Any 205,224 8.6% 
5 Yes No 1 $60k+ 0 or 1 1+ Any Any 165,176 6.9% 
6 Yes No 2+ $25k - $60k 0 1+ Any Any 101,743 4.2% 
7 Yes No 2 $25k - $60k 1+ 1+ Any Any 155,804 6.5% 
8 Yes No 3+ $25k - $60k 1+ 1+ Any Yes 21,853 0.9% 
9 Yes No 3+ $25k - $60k 1+ 1+ Any No 236,925 9.9% 

10 Yes No 2+ $60k - $120k 0 or 1 1+ Yes Any 98,867 4.1% 
11 Yes No 2+ $60k - $120k 0 or 1 1+ No Any 152,092 6.4% 
12 Yes No 2 $60k - $120k 2 1+ Any Any 127,920 5.3% 
13 Yes No 3 $60k - $120k 2+ 1+ Any Any 112,760 4.7% 
14 Yes No 4+ $60k - $120k 2+ 1+ Any Any 172,743 7.2% 
15 Yes No 2+ $120k+ 0 or 1 1+ Any Any 104,872 4.4% 
16 Yes No 2+ $120k+ 2+ 1+ Any Any 238,157 10.0% 

Total All All All All All All All All 2,393,388 100.0% 
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2.2.2 Licensed Demographic and Vehicle Registration Datasets 

In addition to the ABM demographic information, the licensed demographic dataset from 
Epsilon® and the vehicle registration data from R.L. Polk® were also used in the synthetic fleet 
generator. 

The R.L. Polk® vehicle registration dataset provides information on 1.35 million vehicles in 
metro Atlanta, which includes the vehicle identification number (VIN), registration address, 9-
digit ZIP code, vehicle make, model, model year, body type (sedan, hatchback, coupe, truck, 
etc.), Polk® vehicle type (cars, mini-vans, sport utility vehicles (SUVs), and pick-up trucks), 
odometer (only for approximately 20% of the vehicles), and other parameters. Because these 
proprietary data also include personally identifiable information (PII), such as individual first 
name and last name, the team processed these data with utmost care and confidentiality. All 
PII data used in this study were stored on a secure server located on the Georgia Tech campus 
and data were not permitted to be removed from the secure location to ensure data privacy 
and protection. All PII information was removed from the data before processing (no PII is 
needed by the synthetic fleet generator), and the data were processed using local computers 
located in a secure office on Georgia Tech campus. Access to this office was limited to 
authorized team members who passed human subject reviews, and only authorized members 
of this research project were granted access to the computer that stored the project 
(processed) data. These measures were taken to prevent any unauthorized access or disclosure 
of PII and to protect the privacy and confidentiality of the individuals whose data were used in 
this study. 

The Epsilon® 2022 dataset provided information of 3.21 million households in metro Atlanta, 
and a total of 95 attributes that provide household and individual demographics, including 
household size (number of adults and number of children), household income (relative index 
compared to national average), ethnicity of every household member, household address, 
household ZIP code, and the longitude and latitude of the household. 

The synthetic fleet generator was based on pairing the geographic locations of households 
across various datasets, and thus it was important to perform quality assurance and quality 
control (QA/QC) checks on the data by comparing the Epsilon® and R.L. Polk® address 
information. Out of the 3,215,967 records in Epsilon dataset, the research team identified 
101,688 addresses that were P.O. Boxes (about 3.2%), and 45,335 records out of 1,356,745 
vehicles in Polk® vehicle registration dataset were P.O. boxes (about 3.3%). The team decided 
to retain these records, given that they appear in both datasets, for use in verification 
comparisons. 

Duplicate addresses were also identified in Epsilon® 2020 data and in the R.L. Polk® dataset, 
and the team reviewed the distribution of the addresses by number of repeats. The maximum 
number of repeats of Polk® dataset was eight, which is not regarded as a data quality issue (one 
household can have multiple vehicles). The team performed a manual review of 66,763 
duplicate Epsilon® data records (representing 180 unique addresses) by sampling addresses 
within each repeat interval (defined by the number of times each address is repeated). The 
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results indicated approximately half of the records that come with 1,000+ repeats are 
commercial addresses, such as post offices, parking garages, and auto services (not residential 
addresses). These locations with large number of duplicates represent fleets, but the largest 
values appear to represent leasing companies. The vehicles at these commercial addresses 
were removed, because they could not be assigned to individual households. However, 
excluding leased vehicles, which are generally less than five-years-old, will necessarily bias 
synthetic fleet generation and assignment. Future implementations of synthetic fleet models 
need to account for the assignment of leased vehicles to specific households, which might be 
obtained directly from the state vehicle registration database, or derived by combining 
registration records with other sources, such as smog check data or vehicle insurance data. 

The team was unable did to perform a more thorough review of all addresses manually due to 
the following constraints: 1) manual reviewing of all Epsilon® addresses takes a significant 
amount of human labor, and the team is working on developing a machine learning-based 
algorithm to facilitate an automatic process of QA/QC; 2) commercial addresses only account 
for 5% to 10% records (estimated), or 1% of the unique addresses of the total households; and 
3) the R.L. Polk® vehicle registration data were paired with the Epsilon® households on a many-
to-one relationship (multiple vehicles were allocated to households base on having the same 
registration address), and the duplicates only impacted the similarity pairing between ABM-
Epsilon® (which was based on random sampling). 

The team also received additional vehicle ownership information from Epsilon (purchased 
March 2023), which included 19 new attributes and provided the number of vehicles (can be 
more than five vehicles), make, model, and model year information (for up to five vehicles per 
household), for 770,563 households. The team performed a preliminary QA/QC process of the 
Epsilon vehicle ownership data, and it was indicated that 393,041 households out of 770,563 
records (approximately 51.0%) were either an exact match with the synthetic fleet results 
(including make, model and model year information), or a subset of the synthetic fleet (the 
synthetic fleet allocated more vehicles to the households, but the rest of the vehicles are 
exactly the same). This indicates that the generated synthetic fleet had a good pair rate with 
commercial dataset, and that the Epsilon® and R.L. Polk® data may have been derived from (or 
partially derived from) the same or similar sources. The team did not consider this agreement 
to indicate that both sources were accurate. The Epsilon® vehicle ownership dataset was not 
used in this study based on issues described below. 

A preliminary QA/QC process was performed targeting the Epsilon® vehicle ownership dataset 
(documented in Appendix A). The vehicle ownership information in the Epsilon® licensed data 
were found to contain little, if any, information on vehicles less than nine years old, and thus 
these data could be used only in allocating only older (9+ years old) to households. Similarly, 
the vehicle age distributions derived from the R.L. Polk® Vehicle Registration Dataset were also 
found to have an unrealistically low proportion of younger (less than nine years old, post 2014 
model years) based on historic vehicle sales data. These R.L. Polk® are shown in Figure 1. These 
commercial data sets were compared the vehicle age distributions from Georgia Department of 
Natural Resources (DNR) based on state vehicle registration data and the on-road observed 
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fleet age distribution for a recent project for the Georgia State Road and Toll Authority (Randall 
Guensler, et al., 2022). This comparison is shown in Figure 2 and Figure 3. From the figures, it is 
clear that the R.L. Polk® Vehicle Registration Data show many fewer younger vehicles (less than 
nine years old) than the other data sources. This difference was reported to R.L. Polk® who is 
evaluating the source of the bias. In the interim, for the purposes of this study the R.L. Polk® 
data were used only for allocation of older (nine years or older) vehicles within the synthetic 
fleet generator and the allocation of younger vehicles (less than nine years of age) was 
randomized, using proportions derived from the DNR data. The proposed methodology (pairing 
demographics, travel demand model and vehicle registration data, and comparing the synthetic 
fleet vs. regional fleet vs. sub-regional fleet in terms of emission modeling results) was used for 
a case study of vehicles that are nine years or older. The results of all model years vs. those of 
vehicles of 9+ years are discussed in the Results and Discussion section below. The full 
methodology can be applied once more reliable registration data become available for the 
younger vehicles in the fleet (as noted earlier, the team has concluded that access to state 
registration data will be required). 

 

Figure 1. Vehicle age distributions of Polk® Vehicle Registration Data. 
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Figure 2. Vehicle age distributions of Polk® Vehicle Registration, observed license plates and 
DNR fleet. 
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Figure 3. Vehicle age distributions (vehicle age <= 8 Years) of Polk® Vehicle Registration, 
observed license plates and DNR fleet. 
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Figure 4. Vehicle age distributions (vehicle age > 9 Years) of Polk® Vehicle Registration, 
observed license plates, and DNR fleet. 

2.3 Synthetic Household Generator 

The synthetic fleet generator works in a two-step process initiated by allocating the R.L. Polk® 
vehicle information for the older vehicles to Epsilon® demographic dataset (address pairing), 
and by pairing the demographics of ABM vs. Epsilon® 2022 (similarity based on household size, 
household income, number of vehicles, and number of children). The R.L. Polk® vehicle 
registration information was first allocated to the Epsilon® demographic data by pairing the 
household addresses. The ABM and Epsilon® households were then integrated by a 
comprehensive similarity assessment (using weighted Euclidean distance) that was consistent 
with the previous study (Dai, et al., 2022). 

The synthetic household generation was fleet-oriented (source type and model year needed to 
model vehicle emissions), and it is important to include the variables that impact household 
vehicle ownership (number of vehicles, vehicle make, model, and model year). The Epsilon® 
dataset does not come with the vehicle ownership data (until the late purchase in March 2023), 
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registration addresses to the residential addresses. Before conducting the pairing process, 
address information from both datasets were first converted to a standard address format by 
replacing the address suffixes. The table of address suffixes is provided in Appendix B. Given the 
duplicate addresses in Epsilon® 2022 dataset, when a single Polk® address corresponded to 
multiple Epsilon® households sharing the same address, the vehicle information was duplicated 
and paired with each of these households (one to many relationship). This duplication was 
intentional to create a pool of potential vehicle ownership options (rather than defining a fixed 
fleet composition), so that the subsequent random draws are based on a diverse set of 
potential vehicle ownership scenarios. 

A total of 1,047,965 vehicles were paired to the Epsilon® households (approximately 82.57% of 
the R.L. Polk® Vehicle Registration Data after removing younger vehicles), and the vehicles (no 
younger than nine years) that were not paired to any Epsilon® household were reviewed to 
make sure no vehicles were missing. A subset of 300 vehicles (randomly sampled out of the 
221,187 vehicles that were not paired to any Epsilon® household) were manually reviewed to 
make sure these addresses were not in the Epsilon® datasets (no pairing needed). 

Most of the unpaired records are those in external counties where Epsilon® records are sparse, 
as shown in Figure 5, and the three ZIP codes with high percentages in midtown/downtown 
Atlanta are 30332 (Campus of Georgia Tech), 30322 (Campus Emory University), and 30334 
(State Capitol and Legislative Office), in which Epsilon® has very limited households. 
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Figure 5. Percentages of Polk® Vehicle Records that were not paired by ZIP code. 

The Epsilon® households that were not allocated any R.L. Polk® vehicle were temporarily 
removed before pairing with Epsilon households to ABM, and the ABM households with no 
vehicle (demographic group #1) were also excluded from the subsequent pairing, to make sure 
that all integrated results have at least one vehicle as defined. 

The inherent one-to-many relationships that exist between the ABM, Polk®, and Epsilon® 
datasets introduce variability in the possible pairings, and a deterministic approach to pairing 
would not capture the full spectrum of potential outcomes. The team employed a combination 
of Monte Carlo simulation and Bootstrap technique based on random resampling of the 
Epsilon® households associated with Polk® vehicle information, and performed a total of 1,000 
iterations of the synthetic household and fleet generator. 

The Epsilon® 2022 household locations are by longitude and latitude, and these households 
were first allocated to TAZs in metro Atlanta (ABM household locations are at TAZ level). The 
ABM households by TAZ were then iteratively examined by assessing their similarities to the 
Epsilon® households within the same TAZs, and weighted Euclidean distance was used to 
represent a comprehensive similarity between a pair of ABM and Epsilon® households based on 
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household size, household income, number of vehicles, and number of children, as shown in 
Equation (1). 

𝐷𝑚,𝑛 = (∑ 𝑤𝑖(𝑥𝑚,𝑖 − 𝑏𝑛,𝑖)
24

𝑖=1 )

1

2
 (1) 

where 𝐷𝑚,𝑛 is the weighted Euclidean distance between the 𝑚th Epsilon® household vs. the 
𝑛th ABM household, 𝑤𝑖  represents the weight of attribute 𝑖 (from 1 to 4, and represents 
household size, household income, number of vehicles, and number of children), 𝑥𝑚,𝑖 and 𝑏𝑛,𝑖 

represent the value of the attribute 𝑖 for 𝑚th Epsilon® household and the 𝑛th ABM household. 

The weights of the input variables were derived based on a consistent methodology with the 
previous study (Dai, et al., 2022) by manually reviewing the permutation importance of a 
decision tree regression and the feature importance of a random forest allocation. Permutation 
feature importance is a model-agnostic method used to estimate the importance of input 
features by evaluating the decrease in model performance when the values of a specific feature 
are randomly shuffled (Brière, et al., 2021), and it works by breaking the relationship between 
the feature and the target variable, and by subsequently measuring the impact on prediction 
accuracy (if permuting a feature leads to a significant drop in model performance, that feature 
is considered important for model's predictions). The team also assessed the feature 
importance using a Random Forest Regressor, an ensemble learning method that offers 
improved accuracy and robustness by averaging impurity reduction across multiple decision 
trees (Breiman, 2001; Breiman, et al., 1984). The weights of the four input variables were 
shown in Table 2, and a detailed description of the weights and the feature importance can be 
found in Appendix C. 

Table 2. Assigned weights for ABM Epsilon household similarity. 

Variable Weights Assigned 

Household Size 0.30 

Household Income 0.35 

Number of Vehicles 0.35 

Number of Children 0.10 

Each ABM household was then paired with the Epsilon® household that was allocated with the 
greatest similarities (minimum weighted Euclidean distance) to integrate the demographic 
information of ABM vs. Epsilon®. One ABM household can correspond to multiple Epsilon® 
households (within the same TAZ) that all exhibited the same similarities (i.e., distances that are 
all minimum), and these households form a pool of potential households that can be paired 
with the ABM household. One of these Epsilon households was selected to be paired with the 
ABM household in the subsequent random process of the synthetic fleet generator. 
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The team assured all Epsilon®-Polk® households were paired with ABM household with at least 
one vehicle, by excluding Epsilon® households that was not allocated with any record from R.L. 
Polk®. For ABM households with no vehicle ownership (Demographic Group #1) that were 
temporally excluded, no Epsilon®-Polk® record was allocated to these households at this stage 
(a random vehicle from the fleet population was assigned to each of their trips in the 
subsequent processes). 

2.4 Synthetic Fleet Generator 

The inherent one-to-many relationships between the ABM, Polk®, and Epsilon® datasets 
introduce variability in the possible pairings, and a deterministic approach to pairing would not 
capture the full spectrum of potential outcomes. The team employed a combination of Monte 
Carlo simulation and Bootstrap techniques to assess the fleet composition and the resultant CO 
emissions. A two-stage random allocation algorithm was designed to: 1) pair the ABM 
households with the Epsilon®-Polk® households, and 2) allocate a random vehicle to each of the 
ABM-predicted tours and trips. A total of 1,000 primary iterations of random allocation were 
performed to estimate the average and 95% confidence interval of the results. 

The first stage of the synthetic fleet generator paired each ABM household with an Epsilon®-
Polk® household, based on the previously mentioned similarities. If multiple Epsilon®-Polk® 
households exhibited the same highest degree of similarity, a random Epsilon®-Polk® 
household was selected from this pool for pairing. The random pairing algorithm ensured that 
no Epsilon®-Polk® household was paired more than once, and when two ABM households were 
matched with the same Epsilon®-Polk® household, a re-draw was conducted for all households 
within that TAZ. 

The second stage of the generator allocated vehicles of each ABM households to their trips. 
ABM trips are structured as tours, which are essentially chains of consecutive trips that start 
and end sequentially, and the team assumed that a single vehicle is used throughout a tour 
(i.e., no vehicle switch mid-tour). In each primary iteration of the synthetic generator, an 
Epsilon®-Polk® household was paired with each ABM household, and the paired household 
could have multiple vehicles assigned to it. For ABM households that was paired with only one 
vehicle, that vehicle was automatically allocated to all the trips that ABM predicted for that 
household. For households that were assigned multiple vehicles, a specific vehicle was chosen 
for all trips in each tour. 

This allocation of vehicles was performed through an iterative random sampling process that is 
weighted based on the relative mileage accumulative rates (RMAR) that are used in 
MOVES2014 (U.S. EPA, 2016) and MOVES3 (U.S. EPA, 2021), as shown in Table 3 (using the 
same RMAR for both MOVES versions). The derivation of RMAR for passenger cars was based 
on the NHTSA report on survivability and mileage schedules (NHTSA, 2006), and a 
comprehensive explanation of how RMARs were derived is provided in Appendix D. 
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Table 3. Relative Mileage Accumulative Rates (RMAR) for passenger cars and passenger 
trucks from MOVES2014 and MOVES3.  

MOVES Vehicle Age ID Passenger Car (Miles) Passenger Truck (Miles) 

0 12,594 16,085 
1 13,961 15,782 
2 13,669 15,442 
3 13,357 15,069 
4 13,028 14,667 
5 12,683 14,239 
6 12,325 13,790 
7 11,956 13,323 
8 11,578 12,844 
9 11,193 12,356 

10 10,804 11,863 
11 10,413 11,369 
12 10,022 10,879 
13 9,633 10,396 
14 9,249 9,924 
15 8,871 9,468 
16 8,502 9,032 
17 8,144 8,619 
18 7,799 8,234 
19 7,469 7,881 
20 7,157 7,565 
21 6,866 7,288 
22 6,596 7,055 
23 6,350 6,871 
24 6,131 6,739 
25 5,940 6,663 
26 5,780 6,648 
27 5,654 6,648 
28 5,562 6,648 
29 5,508 6,648 
30 5,494 6,648 

 

In our study, every primary iteration that paired ABM households with Epsilon®-Polk® 
households generated a set of fleet ownership profiles (vehicle counts by source type and 
vehicle age), and the weights for random vehicle allocation were initially determined by 
dividing the RMAR by the respective vehicle counts (i.e., average mileage per vehicle). Vehicles 
with higher weights were more likely to be selected (higher mileage), and these weights were 
applied in a relative manner within the context of each household's set of vehicles. For 
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example, a household with three vehicles would have their weights computed separately and 
relatively, even if two vehicles belong to the same source type and age. 

The weights were further adjusted through sub-iterations to make sure that the overall VMT 
distributions by source type and by vehicle age aligns with the RMAR in MOVES. The 
adjustment factors of each sub-iteration were based on the deviation between the VMT 
distributions generated in the prior sub-iteration vs. the desired VMT distributions (i.e., the 
ones derived from RMAR), as shown in Equation (2). The average deviation across the age 
groups was used as a metric to assess the overall difference between the generated vs. desired 
VMT distributions, as shown in Equation (3), and a value closer to 0 indicates that the 
generated distribution closely aligns with the desired RMAR, while values further from 0 
denotes greater deviations. 

𝐴𝑑𝑗𝑠,𝑖 =
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑉𝑀𝑇 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑠,𝑖

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑉𝑀𝑇 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠𝑠,𝑖
 (2) 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑣𝑔 =
1

𝑁
∑ |𝐴𝑑𝑗𝑠,𝑖 − 100%|𝑠,𝑖  (3) 

where 𝑠 is the source type (passenger cars and passenger trucks), 𝑖 is the MOVES vehicle age ID 
(from 9 to 30), and 𝑁 is the total number of age groups across both source types (44 in this 
case). 

Through empirical testing across 30 runs with varying parameters, it was observed that an 
average deviation threshold of 0.05 serves as an optimal convergence criterion. When the 
average deviation falls below this threshold, the generated distributions tend to oscillate rather 
than further converge, which indicated a stabilization in the alignment with the desired RMAR. 
The empirical tests indicated that 20 sub-iterations per primary iteration took 10+ hours to 
finish (not surprising given the substantial size of the input data), while the deviations ceased to 
decrease at around sub-iteration #10 to sub-iteration #15, and the team capped the maximum 
number of sub-iterations at 25 to prevent potential infinite loops. 

The weighted random allocation approach systematically refined the VMT distributions to draw 
them closer to the desired RMAR with each sub-iteration. However, it is important to note that 
the generated VMT distributions may not perfectly align with the RMAR even after achieving 
convergence. The vehicle allocation process is constrained by the vehicles that were already 
assigned to households. While vehicle ownership does not dictate the VMT distributions, it 
inherently determines the upper limit of the variability of the generate VMT across source type 
and vehicle age, regardless of our vehicle allocation strategy. More discussion can be found in 
Chapter 3. 

The preferences of vehicles are related to a variety of other factors that are dependent on trip 
purposes and trip lengths, such as fuel efficiency, passenger and cargo capacity, vehicle age and 
reliability, comfort and features, weather, driving conditions (e.g., terrain), and even personal 
attachment or emotional factors, and these preferences may vary across the households. 
However, a comprehensive preference modeling process requires extensive data and will likely 
require separate model development efforts (Choo, S., and Mokhtarian, P. L., 2004), that are 
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beyond the scope of this study. The synthetic fleet generator can incorporate vehicle choice 
models into the modeling framework, and the team is currently assessing the uncertainty 
associated with the random vehicle selection (the assumption that vehicles have equal chances 
to be allocated to trips regardless of trip purpose and trip length). 

2.5 Emissions Modeling 

Two scenarios were developed based on the generated synthetic households and fleet, and the 
emission of CO were modeled for both scenarios. The first scenario of synthetic fleet was based 
on allocating the vehicles to the predicted routes that they were predicted to travel. For each 
primary iteration of the synthetic generator, the emissions were modeled for each traversed 
roadway link for all ABM-predicted trips, and these emission results were further aggregated by 
roadway link, by tour purpose, by households, and by demographic groups. The second 
scenario adopted a county-based approach. The emission rates per vehicle per mile by county 
was extracted from the results of the first scenario, and the emission rates by source type and 
by vehicle age were applied to each link to derive the link-by-link emission inventory, as shown 
in Equation (4). For each primary iteration, the link-by-link differences between the results from 
two scenarios were compared. 

𝐸𝑅𝑓𝑙𝑒𝑒𝑡 = ∑ ∑ 𝑆𝑇% × 𝑀𝑌%𝑆𝑇 × 𝐸𝑅𝑆𝑇,𝑀𝑌𝑀𝑌𝑆𝑇  (4) 

The emission rates were extracted from MOVES-Matrix, that produces precisely the same 
results as running the USEPA MOVES 2014b model for the analysis (Kim, et al., 2020; Liu, et al., 
2019; Xu, et al, 2018a; Xu, et al, 2018b). By running MOVES about thirty thousand times for a 
region (i.e., areas that employ the same fuel specification and inspection and maintenance 
programs), across all combinations of input variables that affect emission rates, a multi-
dimensional emission rate matrix of 90 billion energy and emission rates is generated. Users 
can query the emission rates directly from the matrix and thus improve run time efficiency (Liu, 
et al., 2019); performing a matrix query is about 200x faster than a MOVES run. 

MOVES-Matrix can also support rapid analyses of engine starts, truck hoteling, evaporative 
sources, brake/tire wear (Xu, et al., 2018b) with MOVES 2014b. MOVES-Matrix can be easily 
coupled with vehicle activity analysis (Liu, et al., 2019; Xu, et al., 2018a; Li, et al., 2018; 
Guensler, et al., 2017; Xu, et al, 2016) by importing second-by-second vehicle operations. The 
tool can also be used to compare emissions across individual vehicles (Guensler, et al., 2017) 
when monitored vehicle activity data are avalable. MOVES-Matrix can be applied to a variety of 
transportation models, such as travel demand models (Xu, et al., 2018), and microscopic traffic 
simulation models (Xu, et al., 2016), or applications of emissions modeling that require high-
efficient model performance, such as sensitivity assessment (Lu, et al., 2021; Lu, et al., 2020). 

MOVES-Matrix is highly-desirable for regional-scale dispersion analysis (Kim, et al., 2020; Lu, et 
al., 2021), with high-performance to deal with links from large-scale networks, variations in 
meteorology, and traffic operation input, and with its user-friendly nature to minimize potential 
human error in running MOVES (especially when it comes to increased number of input links). 
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MOVES-Matrix provides a look-up table for each modeling region, and for the Atlanta metro 
area, MOVES-Matrix contains sub-matrices based on combinations of calendar year, season 
(Spring/Fall, Summer, Winter fuel season), temperature (0º-110º F with 1º F-bin intervals, 111 
bins for Atlanta), and relative humidity (0%-100% with 5%-bin intervals, 21 bins for Atlanta). 

The hourly AERMET meteorological profiles were provided by the GA EPD (24 hours × 365 days 
of the year) and the temperature and humidity profiles of the calendar year of 2021 were 
employed, as 2022 were not yet available when the runs were processed (Georgia EPD, 2023). 
Meteorological data from AERMET were rounded to the appropriate temperature and humidity 
to link with appropriate sub-matrices for each MOVES-Matrix run. 

The default ABM output by link also includes non-household trips (e.g., delivery, long term 
truck trips, etc.), but only the modeled household trips were investigated. ABM household trips 
were reallocated to the roadway links by “following” their travel paths (all links they traversed) 
to generate the household traffic volumes by link, while keeping the ABM speed output. The 
household traffic volumes were used for emission modeling for the second scenario. Model-
predicted average link speeds were used in MOVES emission rate selection and remained 
constant across scenarios. 

The ABM output predicts trips of typical workdays, and the emission modeling was performed 
for every working hour in 2022. For each hour, the emissions of all 149,967 links were assessed, 
and a total of 249 days × 24 hours per day = 5,976 working hours were modeled (249 
workdays), after excluding weekends and Georgia holidays. 

The synthetic fleet scenario generates the travel paths for individual vehicles, and the team 
modeled each vehicle separately by “following” their travel paths (in this scenario, each 
MOVES-Matrix link essentially assesses the emissions of one vehicle on one roadway link). A 
total of 523,979,692 MOVES links per day × 249 days = 130,470,943,308 MOVES links were 
modeled per primary iteration for the first scenario. 

The second scenario models each link of the roadway network, for each hour in all workdays. A 
total of 149,967 links per hour × 249 days × 24 hours per day = 896,202,792 MOVES links were 
modeled per primary iteration for the second scenario. 

Upon completing the 1,000 primary iterations, the average metrics (emissions by link, 
differences by link, emissions by demographic group, etc.) were calculated by taking the mean 
values of the results across all iterations, and the 95% confidence intervals (CIs) were 
determined using the 2.5 and 97.5 percentiles across the iterations (Bootstrapping allows the 
mean to follow normal distributions due to the Central Limit Theorem). 

A total of 130 trillion MOVES links were modeled in this study, as shown in Table 4, and the 
MOVES-Matrix runs were launched and finished on the Georgia Tech PACE supercomputing 
cluster. 
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Table 4. Number of modeled MOVES matrix links. 

Scenario 
Number of 

MOVES-Matrix Links 
Note 

Synthetic Fleet 130,470,943,308,000 523,979,692 Links/Day × 249 days ×1,000 Iterations 

County-based 896,202,792,000 149,967 Links/Hour × 5,976 Hours×1,000 Iterations 

Total 130,471,839,510,792  
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3. Results and Discussion 

This section presents the generated vehicle ownership and VMT distributions, the link-by-link 
emission results, and the emission results by tour purpose and demographics. All metrics 
presented in this section are derived from 1,000 iterations, and we provide both the average 
values and their corresponding 95% confidence intervals (CI) to ensure a robust understanding 
of the results. In the column and bar charts of this chapter, error bars indicate the upper and 
lower bonds of the 95% CIs (they might be difficult to distinguish due to their tight ranges). 

3.1 Fleet Composition and VMT Distributions 

The synthetic fleet generation resulted in an average of 3,836,602 vehicles owned by metro 
Atlanta, with the 95% CI range from 3,836,204 vehicles to 3,836,965 vehicles. The small half-
width of the 95% denotes a standard deviation of smaller than 0.01%, and it was indicated that 
the synthetic fleet generations tend to be stable. The results of other metrics, such as emission 
results, indicated similar stability. 

The vehicle ownership by source type and vehicle age is shown in Figure 18 (where the error 
bars indicate the upper and lower bounds of the 95% CIs), which indicates that more passenger 
cars were observed than passenger trucks, except for model years 2000 to model years 2003 
(vehicle ages from 18 years to 20 years). Vehicle ownership (vehicle counts) are listed in 
Appendix E. The comparison between the R.L. Polk® data vs. the synthetic fleet is shown in 
Figure 7, indicating that the generated fleet tends to exhibit an even larger share of old vehicles 
than the original Polk® data. 

It's important to note that vehicles younger than nine years old were excluded from our dataset 
prior to the synthetic fleet generation. Hence, the age distributions derived from the Polk® data 
indicated a potential bias, with a higher prevalence of older vehicles than expected. This initial 
bias also appears to be amplified in the post-synthetic pairing. 

Several hypotheses might explain this observed amplification. The removal of newer vehicles 
might have had a disproportionate impact on certain areas. For instance, wealthier households, 
which might predominantly own newer or classic older vehicles, could have been affected more 
by the removal. This could lead to an overrepresentation of older vehicles in these areas, 
skewing the overall distribution. Also, the inability to incorporate more than 3% of the fleet 
representing leased vehicles registered to a leasing company also will have biased fleet age (to 
be older) and will have affected assignment to those households that may have been more 
likely to lease. Even after excluding the younger vehicles, there also might be other underlying 
biases or issues in the Polk® data that were not immediately evident from the overall 
distributions. It will be critical to repeat this research using data from the state vehicle 
registration database (if access can be obtained) to avoid these biases. 
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Figure 6. Regional vehicle distributions by source type. 
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Figure 7. Vehicle age distributions of synthetic fleet vs. DNR inputs vs. Polk® data. 

The total VMT per day for the metro Atlanta region was approximately 73,910,118.6 miles, and 
a cross-reference of the vehicle ownership results indicated an average mileage of 
approximately 19.26 miles per vehicle per day, which does not deviate from what the team 
would consider reasonable. The generated VMT distributions by source type and by vehicle age 
is shown in Figure 8. The small ranges of the CIs indicate that generated VMT distributions were 
stable, and the comparison against the RMAR indicated a general good alignment with the 
desired VMT distributions, despite the deviations in the generated fleet ownership profiles. 

However, notably lower distributions were still observed for vehicles older than 13 years 
(model year of 2008) and those older than 25 years. This was due to the much lower ownership 
of these model years in the fleet ownership data and their distributions in the paired 
households. The random allocation of vehicles could only adjust VMT distributions based on 
households that were assigned with multiple vehicles. For those households that were 
allocated only one vehicle, that vehicle was allocated to all trips, irrespective to its weight. This 
again indicates that access to the official state vehicle registration database appear to be 
essential for developing representative synthetic household and fleet generators. 
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Figure 8. Generated VMT distributions vs. RMAR by source type and by vehicle age. 

3.2 Network Emission Inventories 

The differences in average CO emissions between the two scenarios were visualized link-by-link, 
with the 95% confidence intervals (CIs) also plotted for clarity. Links with no emissions, such as 
managed lanes that remain closed during specific hours, were excluded from the visualization 
to maintain focus on the active and relevant links. As a representative sample, the differences 
for the time slot from 9 AM to 10 AM were plotted, as shown in Figure 9 (average differences) 
and Figure 10 (confidence intervals of differences), and it was observed that similar patterns 
and findings were consistent across other hours. Comprehensive plots for all hours have been 
provided in Appendix F for those interested in a deeper dive. 

To interpret the plotted CIs: if both upper and lower bounds of the CI (for a particular link) 
indicate a negative difference, it suggests with 95% confidence that the county-based approach 
resulted in an underestimation of emissions for that link (negative bias). Conversely, if both 
bounds are positive, it indicates an overestimation with 95% confidence (positive bias). Figure 
11 illustrates those links with both CI bounds of the differences either positive or negative at 9 
AM to 10 AM. In terms of spatial distribution of these differences, a few patterns emerged. 
Negative biases, or underestimations, were predominantly observed on busy arterial links and a 
few isolated links near the periphery of the metro area. On the other hand, positive biases, or 
overestimations, were primarily seen on the outer links, with a minor presence on the 
interstate highways. Links situated around the downtown area or town centers in the metro 
area (e.g., Sandy Springs) generally exhibited smaller differences, and links on the periphery or 
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the edge of the metro area displayed larger differences. When focusing solely on the "biased" 
links, or those with CIs bounds of differences that are both positive or negative, the observed 
trends remained consistent. Positive biases were predominantly seen on the outer links and 
highways, while negative biases were more common on local arterial roads. 

The county-based approach essentially aggregates the impact of average speed on emission 
rates, and this aggregation leads to loss of resolution in the input. This spatial distribution of 
biases is likely to be associated with the sensitivity of emission rates against speed, and the 
variabilities in the sensitivity across source types, model years, and facility types (restricted 
highway vs. unrestricted highway). The distinct patterns in the ABM-predicted fleet 
composition and travel speed across different links (e.g., certain links might consistently 
operate under free-flow conditions especially those near the edge of the modeled network, 
while other links might predominantly be used by specific source types, such as passenger cars) 
intersects with the varied sensitivities which could lead to the biases. 

Very few links exhibit consistent biases across all hours, as shown in Figure 12. A notable 
observation was the consistent underestimation of emissions on several links near the Six Flags 
area across all hours. This persistent bias suggests specific local factors or conditions that might 
not be adequately captured by the county-based approach. Furthermore, the northern 
interstate highways of Atlanta, specifically I-75, I-85, GA-400, and parts of I-285, consistently 
exhibited positive biases. This indicates a tendency for the county-based approach to 
overestimate emissions on these major transportation routes. However, a wide span of the 
links was demonstrated to have at least one hour of biases, as shown in Figure 13. Please note 
positive and negative biases do not necessarily cancel each other off, especially for hot-spot 
analysis where peak hour traffic is often used to model the emissions. 
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Figure 9. Link-by-link average differences between the scenarios, 9 AM to 10 AM. 

 

Figure 10. Link-by-link CIs of difference between the scenarios, 9 AM to 10 AM. 
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Figure 11. Links with both CI bounds negative or positive, 9 AM to 10 AM. 

 

Figure 12. Roadway links with all CI bounds negative or positive across all hours. 
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Figure 13. Roadway links with both CI bounds negative or positive for at least one hour. 

3.3 Emission Results by Tour Purpose and by Demographic Groups 

The emission results aggregated by half-hour bin are shown in Figure 14, and the error bars 
indicates the bonds of the 95% CIs. Similar to the other results, the tight ranges of the CIs 
indicate stable predictions of the synthetic fleet. The emission trends by time of day aligns with 
the anticipation of the variances in average speed and traffic volumes (e.g., peak hours vs. off 
peak hours). 
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Figure 14. Average daily CO emissions by half-hour. 

The emission predicted by the synthetic fleet generations were aggregated by tour purpose, as 
shown in Figure 15. The white-collar work trips stand out with the highest CO emissions, 
(significantly higher than other categories), followed by blue-collar work trips. These large 
emissions are not surprising given the prevalent demands of commute trips and that these trips 
predominantly occur during peak hours (lower speed and larger emission rates). This indicates 
the importance of sustainable commuting solutions, such as carpooling or transit incentives.  

Interestingly, the emissions from other discretionary activities and other maintenance activities 
rank closely to each other, only next to white-collar and blue-collar work tours. This equivalency 
indicates that both essential (maintenance) and non-essential (discretionary) activities 
contribute similarly to CO emissions. 

Emissions associated with pre-school education tours are almost double those linked to 
university education tours. This difference could be attributed to factors like the frequency of 
trips, the distance traveled, or the type of vehicles predominantly used by parents or guardians 
for preschool drop-offs and pick-ups (even for metro Atlanta with various college campuses). 

The emissions from dining out from home and dining out from work are relatively close in 
value, and both are considerably lower than most work-related categories. This suggests that 
while eating out does contribute to CO emissions, its impact is less pronounced than regular 
work commutes. 
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The findings are further corroborated when examining the average CO emission by time of day 
and by tour purpose, as illustrated in Figure 16. Emissions from work-related categories 
predominantly cluster around morning and afternoon peak hours, and a similar temporal 
pattern is observed for discretionary activities and educational trips. The maintenance activities 
display a more consistent emission profile throughout the day time, which indicates less 
variation across the half-hour bins. The eat-out-at-work trips tend to have higher emissions 
during off-peak hours, and eat-out trips have higher emissions during evening trips. These 
observations align intuitively with the typical temporal characteristics associated with each tour 
purpose. 

 

Figure 15. Average daily CO emissions by tour purpose. 
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Figure 16. Average CO emissions by half-hour and by tour purpose. 

The emission results predicted from on the synthetic fleet were based on individual vehicle and 
link pairs aggregated to the household level. The household emission results were further 
aggregated to the 16 demographic groups to provide average emission results per hour 
(workday) as shown in Table 5.  The rationale for creating the demographic groups can be 
found in section 2.2.1. 

Demographic Group #1 (household with no vehicles) were found to emit the least among all 
groups, which is not surprising given that they have limited access to automobiles (e.g., ride-
sharing services). This was accommodated by the significantly fewer trips in the ABM for Group 
#1. Group #2, Group #3 and Group #6 followed closely, and generated slightly more than Group 
#1 but significantly lower than the other groups. These groups are either low-income or non-
working households, and are likely to have fewer trips (less demand) than other households. 

The demographic groups with higher emissions (i.e., Groups #4, #5, #7, #12, and #13) were 
either one-person households with high income (Group #5), or working households with 
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moderate incomes. The highest emissions were observed at Group #12 and #13, which 
exhausted more than double of the average emission than either Groups #1, #2, #3, or #6. 
These groups were estimated to have a significant commute demand yet less able to regularly 
update of their vehicles relative to the higher-income groups. 

The patterns across the demographic groups could be related to the variances in travel 
demands across households (e.g., commute vs. entertainment trips), and could also be related 
to the variability of spatial distributions across demographics (e.g., shorter vs. longer trips, or 
low-speed trips vs. high-speed trips). The team is working on analyzing the emissions by trip 
purpose, and by demographic groups, and coupling the analysis results with the spatial 
characteristics of the demographics. 

A further enhanced equity assessment can be performed by integrating the emission results 
with population exposure modeling, and the team is working on expanding the modeling efforts 
another on-going research project.
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Table 5. Average hourly emission predictions by demographic group. 

Group 
# 

Own 
Vehicles 

Low 
Income 

HH 
Size 

Annual 
Income 

Workers Vehicles 
With 
Kid(s) 

Single 
Parent 

w/kid(s) 

Emission Per 
Household 
(mg/hour) 

Emission 
Per Person 
(mg/hour) 

1 No Any Any Any Any 0 Any Any 1,010.6 491.4 
2 Yes Yes Any $0 - $25k Any 1+ Any Any 1,821.5 890.0 
3 Yes No 1 $25k - $60k 0 1+ Any Any 817.4 817.4 
4 Yes No 1 $25k - $60k 1 1+ Any Any 2,297.5 2,297.5 
5 Yes No 1 $60k+ 0 or 1 1+ Any Any 2,120.1 2,120.1 
6 Yes No 2+ $25k - $60k 0 1+ Any Any 2,437.3 992.4 
7 Yes No 2 $25k - $60k 1+ 1+ Any Any 4,008.2 2,004.1 
8 Yes No 3+ $25k - $60k 1+ 1+ Any Yes 5,381.9 1,566.5 
9 Yes No 3+ $25k - $60k 1+ 1+ Any No 6,548.6 1,602.4 

10 Yes No 2+ $60k - $120k 0 or 1 1+ Yes Any 7,079.5 1,838.7 
11 Yes No 2+ $60k - $120k 0 or 1 1+ No Any 3,889.2 1,733.8 
12 Yes No 2 $60k - $120k 2 1+ Any Any 5,118.9 2,559.5 
13 Yes No 3 $60k - $120k 2+ 1+ Any Any 7,669.8 2,556.6 
14 Yes No 4+ $60k - $120k 2+ 1+ Any Any 8,637.8 1,835.5 
15 Yes No 2+ $120k+ 0 or 1 1+ Any Any 4,832.3 1,663.0 
16 Yes No 2+ $120k+ 2+ 1+ Any Any 6,586.0 1,958.8 

Total All All All All All All All All 4,374.6 1,696.6 
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4. Conclusions and Future Work 

In this research, the team proposed a synthetic household and fleet generator by integrating 
three datasets: Epsilon® demographic data, R.L. Polk® vehicle registration data, and ARC’s 
ABM2020. The integration process paired households and vehicles based on addresses and 
Traffic Analysis Zones (TAZs) through a series of random draws, and the synthetic fleet was 
generated by allocating vehicles to the trips based on MOVES’s RMAR to capture the predicted 
vehicle ownership and usage patterns. Emissions of CO were modeled and compared in two 
distinct scenarios. The first scenario used a refined trip-based approach that employed the 
synthetic fleet applied to each trip, modeling emissions for each individual trip by following the 
assigned synthetic vehicle along each ABM-predicted route. The second scenario adopted a 
broader county-based approach which applies average emission rates by source type and by 
model year extracted from the first scenario to derive link-by-link emission inventory by county. 
After 1,000 primary iterations, average metrics of fleet ownership, VMT distributions, 
emissions, and differences between the two scenarios were derived, and the 95% confidence 
intervals were determined using Bootstrap techniques. 

The synthetic fleet generation produced an average of 3,836,602 vehicles for metro Atlanta, 
with a 95% CI ranging narrowly from 3,836,204 to 3,836,965 vehicles, which suggested a stable 
generation process with minimal variance. The vehicle ownership by type and age was 
observed to be stable, which demonstrated larger shares of passenger cars over trucks, except 
for vehicles aged 18 to 20 years (which tend to remain in the fleet longer). However, a 
noteworthy observation is the amplified representation of older vehicles in the synthetic fleet, 
even compared to the original Polk® data. The team recommends using the state vehicle 
registration data in future analyses to avoid potential biases that appear to exist in the licensed 
data used in this research. 

The analysis of CO emissions differences between the two scenarios revealed distinct spatial 
patterns across the metro Atlanta region, given the licensed registration data. Downtown links 
consistently showed generally smaller differences (and more negative biases), while peripheral 
links exhibited larger variances, with a relatively widespread overestimation on major northern 
interstates like I-75, I-85, GA-400, and parts of I-285. Additionally, specific areas, such as the 
vicinity of Six Flags, consistently underestimated emissions across all hours. Significant 
differences across one hour modeled predictions were observed for a large area of the metro 
area. Despite any potential issues with representativeness of the licensed registration data, the 
results indicate a clear need to very cautious in applying county-based average emission rates 
to individual roadway links. Roadway fleet composition, which is based upon local fleet 
ownership and local travel patterns, especially between local arterials and freeways used for 
commute and business trips, is very important for accurately reflecting sub-regional and 
regional energy use and emissions. Hence, this accuracy will also significantly impact health 
impact assessments using predicted pollutant concentration immediately downwind from 
transport facilities. 

The temporal emission trends align with expected traffic volume and speed variations, 
particularly during peak hours. When examining emissions by tour purpose, white-collar work 
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trips significantly lead in CO emissions, followed by blue-collar work trips. Notably, emissions 
from discretionary and maintenance activities are comparable, suggesting both essential and 
non-essential activities have similar CO emission contributions. Pre-school tours exhibit almost 
double the emissions of university tours, likely due to trip frequency, distance, or vehicle source 
types used for preschool commutes. Emissions from eating out and eating at work are relatively 
modest, especially when compared to work-related emissions. A deeper dive into the temporal 
emission patterns reveals that work-related emissions peak during rush hours, while 
maintenance activities have a more uniform distribution throughout the daytime. 

When aggregating emissions to demographic groups, Group #1 (households without vehicles) 
unsurprisingly emits the least, given their limited vehicular access. Groups #2, #3, and #6, 
(primarily low-income or non-working households) also exhibit lower emissions. In contrast, 
Groups #4, #5, #7, #12, and #13 (high-income single-person households and moderate-income 
working households), exhibit higher emissions. The highest emissions are seen in Groups #12 
and #13 (working households with moderate incomes), emphasizing the impact of commute 
demands and vehicle updating frequency. These emission patterns across demographic groups 
can be influenced by variations in travel demands and spatial distributions of activity. The team 
is further exploring these emissions in relation to spatial demographics and is considering 
integrating results with population exposure modeling in future research. 

The modeling approach presented in this report can be applied to other metropolitan areas or 
regions, provided that similar detailed data for fleet ownership and travel activity are available 
(and demographics that can be paired with vehicle ownership data).  However, the team also 
recommends that other regions consider exploring the use of vehicle ownership data 
embedded in local travel demand models when detailed vehicle ownership data are not 
available from external sources.  Allocating vehicle ownership at the TAZ level, and then using 
detailed travel paths for each household, will still represent on-road fleet composition better 
(in terms of the temporal and spatial variances) than randomly assigning vehicles across an 
entire county or using county-wide averages in energy and emissions modeling.  The proposed 
modeling framework can also be applied to fleets that include electric and hybrid vehicles, 
given proper geographic and demographic data.  Incorporating electric vehicles will lead to 
even greater differences in emissions modeling results given the vehicle procurement and use 
differences across household demographics (Dai, 2023; Dai, et al., 2022).  That is, electric 
vehicle ownership and use characteristics (i.e., assignment of vehicle activity to the vehicles 
within a household) are closely tied to demographics (such as income levels, charging 
infrastructure availability, and ownership costs).  Because hybrids and battery-electric vehicles 
use significantly less energy and produce much lower emissions than conventional vehicles, 
corridor-level energy use and emission rates are very sensitive to the percentage of EVs in the 
fleet. 

This study developed a synthetic household and fleet generator by integrating demographic 
information from ARC's ABM2020 and Epsilon® 2022 marketing database with vehicle 
ownership information from the R.L. Polk® Vehicle Registration Database. The team identified 
what appears to be a significant bias in the licensed vehicle data sets toward the presence of 
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older vehicles in the fleet, when compared to the registration mix used by the Department of 
Natural Resources based upon their access to the state registration database. The licensed data 
bias appears significant against the presence of newer vehicles (newer than 8 years old) in the 
fleet. The research team faced some challenges to converge on VMT distributions based on 
RMAR from MOVES, but the methods developed are sound. The basic findings that local 
registration mix significantly affects sub-regional emissions predictions also remain clear, 
despite any potential presence in vehicle age in the licensed data. The research team also 
concludes that an updated version of the synthetic household and fleet generator created for 
this research should be prepared as soon as possible, using the methods outlined in this 
research, once full access to the state vehicle registration database can be arranged and proper 
protocols are put in place to use these personally-identifiable data. 
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Data Summary 

As described in this report, the team modeled the emission of CO by roadway link based on 
massive MOVES 2014b model runs, for both synthetic fleet results and county-level results. 

Products of Research 

The traffic volume and speed data used in this study were derived from the Activity-based 
Model (ABM) by Atlanta Regional Commission (ARC), and the fleet composition profiles were 
developed by paring the ABM households with Epsilon® and Polk® datasets.  Under the data 
user agreement, interested parties need to obtain these data from the corresponding 
contractors.  The energy and emission rate matrices applied are public domain and can be 
found at https://zenodo.org/records/13864619. 

Data Format and Content 

The format and content of the MOVES-Matrix (MOVES2014b) data sets are documented in the 
NCST MOVES-Matrix overview and training documents at https://github.com/gti-
gatech/moves_training/. 

Data Access and Sharing 

The MOVES-Matrix data are open source and can be downloaded and freely shared from the 
link provided above. 

Reuse and Redistribution  

The MOVES-Matrix data are open source can be downloaded, used, and freely redistributed 
using the link provided above. The following citation should be used: 

Lu, H. (2024). Synthetic Fleet Generation and Vehicle Assignment to Synthetic Households 
for Regional and Sub-regional Sustainability Analysis (Version 093024) [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.13864619  

  

https://zenodo.org/records/13864619
https://github.com/gti-gatech/moves_training/
https://github.com/gti-gatech/moves_training/
https://doi.org/10.5281/zenodo.13864619
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Appendix A: QA/QC of the Epsilon Vehicle Ownership Database 

The new Epsilon dataset provides vehicle ownership data for 770 thousand households record 
(empty vehicle records for the rest of the dataset) with a total of 1.2 million vehicles. Given the 
high vehicle ownership of metro Atlanta, the team assumes that the empty vehicle information 
does not necessarily indicate these households do not have vehicles. 

The team first performed a comparison of the vehicle records vs. the Polk® vehicle registration 
in terms of vehicle age distribution and source type distribution, and the results indicated they 
were not identical, but were similar. The comparison between Epsilon vehicle ownership data 
vs. the generated synthetic fleet indicated that 393,041 Epsilon households (more than 50%) 
have same vehicle ownership with the regional synthetic fleet (which essentially is based on 
pairing the addresses between Polk® and Epsilon datasets) that were either 1) 100% same with 
the synthetic fleet results, including number of vehicles, and the make, model, and model year 
of every vehicle, or 2) the Epsilon vehicle ownership is a subset of the synthetic fleet results. 

The team found the Epsilon vehicle ownership still worth looking at for future studies, given 
that 265,038 of the Epsilon households have more vehicles than what were generated in the 
synthetic fleet. The vehicle age and source type distribution comparison across the Epsilon 
vehicle ownership data, the Polk® vehicle registration data and the regional synthetic fleet 
results are shown in Figure 17, and Figure 18, respectively. 

 

Figure 17. Vehicle age distributions of Epsilon vehicle ownership Data, Polk® Vehicle 
Registration Data, and the regional synthetic fleet results. 
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Figure 18. Source type distributions of Epsilon vehicle ownership data, Polk® Vehicle 
Registration Data, and the regional synthetic fleet results.  
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Appendix B: Address Suffix Table for Synthetic Household Generation 

The suffix used to pair the synthetic households (addresses from Epsilon 2022 demographics vs. 
Polk® vehicle registration data) is shown in Table 6. 

Table 6. Address suffixes for synthetic household generation. 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
APT UNIT APT LAKE LAKE LK 
APT # APT LAKE LK LK 

ALLEY ALLEE ALY LAKES LAKES LKS 

ALLEY ALLEY ALY LAKES LKS LKS 
ALLEY ALLY ALY LAND LAND LAND 

ALLEY ALY ALY LANDING LANDING LNDG 

ANNEX ANEX ANX LANDING LNDG LNDG 

ANNEX ANNEX ANX LANDING LNDNG LNDG 

ANNEX ANNX ANX LANE LA LN 

ANNEX ANX ANX LANE LANE LN 

ARCADE ARC ARC LANE LANES LN 
ARCADE ARCADE ARC LANE LN LN 

AVENUE AV AVE LIGHT LGT LGT 

AVENUE AVE AVE LIGHT LIGHT LGT 

AVENUE AVEN AVE LIGHTS LIGHTS LGTS 
AVENUE AVENU AVE LOAF LF LF 

AVENUE AVENUE AVE LOAF LOAF LF 

AVENUE AVN AVE LOCK LCK LCK 
AVENUE AVNUE AVE LOCK LOCK LCK 

BAYOO BAYOO BYU LOCKS LCKS LCKS 

BAYOO BAYOU BYU LOCKS LOCKS LCKS 

BEACH BCH BCH LODGE LDG LDG 
BEACH BEACH BCH LODGE LDGE LDG 

BEND BEND BND LODGE LODG LDG 

BEND BND BND LODGE LODGE LDG 

BLUFF BLF BLF LOOP LOOP LOOP 

BLUFF BLUF BLF LOOP LOOPS LOOP 

BLUFF BLUFF BLF MALL MALL MALL 
BLUFFS BLUFFS BLFS MANOR MANOR MNR 

BOTTOM BOT BTM MANOR MNR MNR 

BOTTOM BOTTM BTM MANORS MANORS MNRS 

BOTTOM BOTTOM BTM MANORS MNRS MNRS 
BOTTOM BTM BTM MEADOW MDW MDW 

BOULEVARD BLVD BLVD MEADOW MEADOW MDW 
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Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
BOULEVARD BOUL BLVD MEADOWS MDWS MDWS 
BOULEVARD BOULEVARD BLVD MEADOWS MEADOWS MDWS 

BOULEVARD BOULV BLVD MEADOWS MEDOWS MDWS 

BRANCH BR BR MEWS MEWS MEWS 

BRANCH BRANCH BR MILL MILL ML 
BRANCH BRNCH BR MILL ML ML 

BRIDGE BRDGE BRG MILLS MILLS MLS 

BRIDGE BRG BRG MILLS MLS MLS 
BRIDGE BRIDGE BRG MISSION MISSION MSN 

BROOK BRK BRK MISSION MISSN MSN 

BROOK BROOK BRK MISSION MSN MSN 

BROOKS BROOKS BRKS MISSION MSSN MSN 
BURG BURG BG MOTORWAY MOTORWAY MTWY 

BURGS BURGS BGS MOUNT MNT MT 

BYPASS BYP BYP MOUNT MOUNT MT 

BYPASS BYPA BYP MOUNT MT MT 

BYPASS BYPAS BYP MOUNTAIN MNTAIN MTN 

BYPASS BYPASS BYP MOUNTAIN MNTN MTN 
BYPASS BYPS BYP MOUNTAIN MOUNTAIN MTN 

CAMP CAMP CP MOUNTAIN MOUNTIN MTN 

CAMP CMP CP MOUNTAIN MTIN MTN 

CAMP CP CP MOUNTAIN MTN MTN 
CANYON CANYN CYN MOUNTAINS MNTNS MTNS 

CANYON CANYON CYN MOUNTAINS MOUNTAINS MTNS 

CANYON CNYN CYN NECK NCK NCK 
CANYON CYN CYN NECK NECK NCK 

CAPE CAPE CPE ORCHARD ORCH ORCH 

CAPE CPE CPE ORCHARD ORCHARD ORCH 

CAUSEWAY CAUSEWAY CSWY ORCHARD ORCHRD ORCH 
CAUSEWAY CAUSWAY CSWY OVAL OVAL OVAL 

CAUSEWAY CSWY CSWY OVAL OVL OVAL 

CENTER CEN CTR OVERPASS OVERPASS OPAS 

CENTER CENT CTR PARK PARK PARK 

CENTER CENTER CTR PARK PK PARK 

CENTER CENTR CTR PARK PRK PARK 

CENTER CENTRE CTR PARKS PARKS PARK 
CENTER CNTER CTR PARKWAY PARKWAY PKWY 

CENTER CNTR CTR PARKWAY PARKWY PKWY 

CENTER CTR CTR PARKWAY PKWAY PKWY 

CENTERS CENTERS CTRS PARKWAY PKWY PKWY 

CIRCLE CIR CIR PARKWAY PKY PKWY 
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Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
CIRCLE CIRC CIR PARKWAYS PARKWAYS PKWY 
CIRCLE CIRCL CIR PARKWAYS PKWYS PKWY 

CIRCLE CIRCLE CIR PASS PASS PASS 

CIRCLE CRCL CIR PASSAGE PASSAGE PSGE 

CIRCLE CRCLE CIR PATH PATH PATH 
CIRCLES CIRCLES CIRS PATH PATHS PATH 

CLIFF CLF CLF PIKE PIKE PIKE 

CLIFF CLIFF CLF PIKE PIKES PIKE 
CLIFFS CLFS CLFS PINE PINE PNE 

CLIFFS CLIFFS CLFS PINES PINES PNES 

CLUB CLB CLB PINES PNES PNES 

CLUB CLUB CLB PLACE PL PL 
COMMON COMMON CMN PLACE PLACE PL 

CORNER COR COR PLAIN PLAIN PLN 

CORNER CORNER COR PLAIN PLN PLN 

CORNERS CORNERS CORS PLAINS PLAINES PLNS 

CORNERS CORS CORS PLAINS PLAINS PLNS 

COURSE COURSE CRSE PLAINS PLNS PLNS 
COURSE CRSE CRSE PLAZA PLAZA PLZ 

COURT COURT CT PLAZA PLZ PLZ 

COURT CRT CT PLAZA PLZA PLZ 

COURT CT CT POINT POINT PT 
COURTS COURTS CTS POINT PT PT 

COURTS CTS CTS POINTS POINTS PTS 

COVE COVE CV POINTS PTS PTS 
COVE CV CV PORT PORT PRT 

COVES COVES CVS PORT PRT PRT 

CREEK CK CRK PORTS PORTS PRTS 

CREEK CR CRK PORTS PRTS PRTS 
CREEK CREEK CRK PRAIRIE PR PR 

CREEK CRK CRK PRAIRIE PRAIRIE PR 

CRESCENT CRECENT CRES PRAIRIE PRARIE PR 

CRESCENT CRES CRES PRAIRIE PRR PR 

CRESCENT CRESCENT CRES RADIAL RAD RADL 

CRESCENT CRESENT CRES RADIAL RADIAL RADL 

CRESCENT CRSCNT CRES RADIAL RADIEL RADL 
CRESCENT CRSENT CRES RADIAL RADL RADL 

CRESCENT CRSNT CRES RAMP RAMP RAMP 

CREST CREST CRST RANCH RANCH RNCH 

CROSSING CROSSING XING RANCH RANCHES RNCH 

CROSSING CRSSING XING RANCH RNCH RNCH 
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Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
CROSSING CRSSNG XING RANCH RNCHS RNCH 
CROSSING XING XING RAPID RAPID RPD 

CROSSROAD CROSSROAD XRD RAPID RPD RPD 

CURVE CURVE CURV RAPIDS RAPIDS RPDS 

DALE DALE DL RAPIDS RPDS RPDS 
DALE DL DL REST REST RST 

DAM DAM DM REST RST RST 

DAM DM DM RIDGE RDG RDG 
DIVIDE DIV DV RIDGE RDGE RDG 

DIVIDE DIVIDE DV RIDGE RIDGE RDG 

DIVIDE DV DV RIDGES RDGS RDGS 

DIVIDE DVD DV RIDGES RIDGES RDGS 
DRIVE DR DR RIVER RIV RIV 

DRIVE DRIV DR RIVER RIVER RIV 

DRIVE DRIVE DR RIVER RIVR RIV 

DRIVE DRV DR RIVER RVR RIV 

DRIVES DRIVES DRS ROAD RD RD 

ESTATE EST EST ROAD ROAD RD 
ESTATE ESTATE EST ROADS RDS RDS 

ESTATES ESTATES ESTS ROADS ROADS RDS 

ESTATES ESTS ESTS ROUTE ROUTE RTE 

EXPRESSWAY EXP EXPY ROW ROW ROW 
EXPRESSWAY EXPR EXPY RUE RUE RUE 

EXPRESSWAY EXPRESS EXPY RUN RUN RUN 

EXPRESSWAY EXPRESSWAY EXPY SHOAL SHL SHL 
EXPRESSWAY EXPW EXPY SHOAL SHOAL SHL 

EXPRESSWAY EXPY EXPY SHOALS SHLS SHLS 

EXTENSION EXT EXT SHOALS SHOALS SHLS 

EXTENSION EXTENSION EXT SHORE SHOAR SHR 
EXTENSION EXTN EXT SHORE SHORE SHR 

EXTENSION EXTNSN EXT SHORE SHR SHR 

EXTENSIONS EXTENSIONS EXTS SHORES SHOARS SHRS 

EXTENSIONS EXTS EXTS SHORES SHORES SHRS 

FALL FALL FALL SHORES SHRS SHRS 

FALLS FALLS FLS SKYWAY SKYWAY SKWY 

FALLS FLS FLS SPRING SPG SPG 
FERRY FERRY FRY SPRING SPNG SPG 

FERRY FRRY FRY SPRING SPRING SPG 

FERRY FRY FRY SPRING SPRNG SPG 

FIELD FIELD FLD SPRINGS SPGS SPGS 

FIELD FLD FLD SPRINGS SPNGS SPGS 
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Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
FIELDS FIELDS FLDS SPRINGS SPRINGS SPGS 
FIELDS FLDS FLDS SPRINGS SPRNGS SPGS 

FLAT FLAT FLT SPUR SPUR SPUR 

FLAT FLT FLT SPURS SPURS SPUR 

FLATS FLATS FLTS SQUARE SQ SQ 
FLATS FLTS FLTS SQUARE SQR SQ 

FORD FORD FRD SQUARE SQRE SQ 

FORD FRD FRD SQUARE SQU SQ 
FORDS FORDS FRDS SQUARE SQUARE SQ 

FOREST FOREST FRST SQUARES SQRS SQS 

FOREST FORESTS FRST SQUARES SQUARES SQS 

FOREST FRST FRST STATION STA STA 
FORGE FORG FRG STATION STATION STA 

FORGE FORGE FRG STATION STATN STA 

FORGE FRG FRG STATION STN STA 

FORGES FORGES FRGS STRAVENUE STRA STRA 

FORK FORK FRK STRAVENUE STRAV STRA 

FORK FRK FRK STRAVENUE STRAVE STRA 
FORKS FORKS FRKS STRAVENUE STRAVEN STRA 

FORKS FRKS FRKS STRAVENUE STRAVENUE STRA 

FORT FORT FT STRAVENUE STRAVN STRA 

FORT FRT FT STRAVENUE STRVN STRA 
FORT FT FT STRAVENUE STRVNUE STRA 

FREEWAY FREEWAY FWY STREAM STREAM STRM 

FREEWAY FREEWY FWY STREAM STREME STRM 
FREEWAY FRWAY FWY STREAM STRM STRM 

FREEWAY FRWY FWY STREET ST ST 

FREEWAY FWY FWY STREET STR ST 

GARDEN GARDEN GDN STREET STREET ST 
GARDEN GARDN GDN STREET STRT ST 

GARDEN GDN GDN STREETS STREETS STS 

GARDEN GRDEN GDN SUMMIT SMT SMT 

GARDEN GRDN GDN SUMMIT SUMIT SMT 

GARDENS GARDENS GDNS SUMMIT SUMITT SMT 

GARDENS GDNS GDNS SUMMIT SUMMIT SMT 

GARDENS GRDNS GDNS TERRACE TER TER 
GATEWAY GATEWAY GTWY TERRACE TERR TER 

GATEWAY GATEWY GTWY TERRACE TERRACE TER 

GATEWAY GATWAY GTWY THROUGHWAY THROUGHWAY TRWY 

GATEWAY GTWAY GTWY TRACE TRACE TRCE 

GATEWAY GTWY GTWY TRACE TRACES TRCE 
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Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
GLEN GLEN GLN TRACE TRCE TRCE 
GLEN GLN GLN TRACK TRACK TRAK 

GLENS GLENS GLNS TRACK TRACKS TRAK 

GREEN GREEN GRN TRACK TRAK TRAK 

GREEN GRN GRN TRACK TRK TRAK 
GREENS GREENS GRNS TRACK TRKS TRAK 

GROVE GROV GRV TRAFFICWAY TRAFFICWAY TRFY 

GROVE GROVE GRV TRAFFICWAY TRFY TRFY 
GROVE GRV GRV TRAIL TR TRL 

GROVES GROVES GRVS TRAIL TRAIL TRL 

HARBOR HARB HBR TRAIL TRAILS TRL 

HARBOR HARBOR HBR TRAIL TRL TRL 
HARBOR HARBR HBR TRAIL TRLS TRL 

HARBOR HBR HBR TUNNEL TUNEL TUNL 

HARBOR HRBOR HBR TUNNEL TUNL TUNL 

HARBORS HARBORS HBRS TUNNEL TUNLS TUNL 

HAVEN HAVEN HVN TUNNEL TUNNEL TUNL 

HAVEN HAVN HVN TUNNEL TUNNELS TUNL 
HAVEN HVN HVN TUNNEL TUNNL TUNL 

HEIGHTS HEIGHT HTS TURNPIKE TPK TPKE 

HEIGHTS HEIGHTS HTS TURNPIKE TPKE TPKE 

HEIGHTS HGTS HTS TURNPIKE TRNPK TPKE 
HEIGHTS HT HTS TURNPIKE TRPK TPKE 

HEIGHTS HTS HTS TURNPIKE TURNPIKE TPKE 

HIGHWAY HIGHWAY HWY TURNPIKE TURNPK TPKE 
HIGHWAY HIGHWY HWY UNDERPASS UNDERPASS UPAS 

HIGHWAY HIWAY HWY UNION UN UN 

HIGHWAY HIWY HWY UNION UNION UN 

HIGHWAY HWAY HWY UNIONS UNIONS UNS 
HIGHWAY HWY HWY VALLEY VALLEY VLY 

HILL HILL HL VALLEY VALLY VLY 

HILL HL HL VALLEY VLLY VLY 

HILLS HILLS HLS VALLEY VLY VLY 

HILLS HLS HLS VALLEYS VALLEYS VLYS 

HOLLOW HLLW HOLW VALLEYS VLYS VLYS 

HOLLOW HOLLOW HOLW VIADUCT VDCT IA 
HOLLOW HOLLOWS HOLW VIADUCT VIA VIA 

HOLLOW HOLW HOLW VIADUCT VIADCT VIA 

HOLLOW HOLWS HOLW VIADUCT VIADUCT VIA 

INLET INLET INLT VIEW VIEW VW 

INLET INLT INLT VIEW VW VW 
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Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 

Primary 
Street Suffix 

Commonly 
Used 

Abbreviation 

Postal 
Service 

Standard 
Suffix 

Abbreviation 
ISLAND IS IS VIEWS VIEWS VWS 
ISLAND ISLAND IS VIEWS VWS VWS 

ISLAND ISLND IS VILLAGE VILL VLG 

ISLANDS ISLANDS SS VILLAGE VILLAG VLG 

ISLANDS I SLNDS VILLAGE VILLAGE VLG 
ISLANDS ISS ISS VILLAGE VILLG VLG 

ISLE ISLE ISLE VILLAGE VILLIAGE VLG 

ISLE ISLES ISLE VILLAGE VLG VLG 
JUNCTION JCT JCT VILLAGES VILLAGES VLGS 

JUNCTION JCTION JCT VILLAGES VLGS VLGS 

JUNCTION JCTN JCT VILLE VILLE VL 

JUNCTION JUNCTION JCT VILLE VL VL 
JUNCTION JUNCTN JCT VISTA VIS VIS 

JUNCTION JUNCTON JCT VISTA VIST VIS 

JUNCTIONS JCTNS JCTS VISTA VISTA VIS 

JUNCTIONS JCTS JCTS VISTA VST VIS 

JUNCTIONS JUNCTIONS JCTS VISTA VSTA VIS 

KEY KEY KY WALK WALK WALK 
KEY KY KY WALKS WALKS WALK 

KEYS KEYS KYS WALL WALL WALL 

KEYS KYS KYS WAY WAY WAY 

KNOLL KNL KNL WAY WY WAY 
KNOLL KNOL KNL WAYS WAYS WAYS 

KNOLL KNOLL KNL WELL WELL WL 

KNOLLS KNLS KNLS WELLS WELLS WLS 
KNOLLS KNOLLS KNLS WELLS WLS WLS 
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Appendix C: Generation of Feature Importance Based on Random 
Forest and Decision Tree Classifier 

The weights of demographic variables that were used to model the similarities between any 
pair of households (in terms of their vehicle ownership) were determined by evaluating the 
feature importance results of each variable. The variables of number of children, number of 
adults, household income and ethnicity were first used as input variables to establish the 
models that predict number of vehicles (target variable), and for each vehicle, prediction 
models were established iteratively to predict the model year and source type (the variable of 
number of vehicles was also used as one of the input variables in these iterations). The 
permutation importance results based on decision tree regression models and the feature 
importance based on Random Forest models of each variable were then normalized and 
examined, and the weights were determined by evaluating these results. 

The assessment of feature importance started with four initial features (input variables), three 
of which were numerical (the variables of number of children, number of adults, and household 
income), and one was categorical (the variable of ethnicity). The initial target variable was 
number of vehicles, which is also numerical. The team employed one-hot encoding to create a 
set of binary features representing the various categories of ethnicity, which allowed the 
categorical variable to be included in the modeling process seamlessly. 

The team first assessed the permutation feature importance, which is a model-agnostic method 
used to estimate the importance of input features by evaluating the decrease in model 
performance when the values of a specific feature are randomly shuffled (Brière, et al., 2021). 
This approach works by breaking the relationship between the feature and the target variable, 
and subsequently measuring the impact on the model's prediction accuracy. The rationale is 
that if permuting a feature leads to a significant drop in model performance, that feature is 
considered important for the model's predictions. 

The team used a DecisionTreeRegressor model to analyze the feature importance for predicting 
the initial target variable, and the model's performance was evaluated using the Root Mean 
Squared Error (RMSE) metric, which measures the average difference (Euclidean distance) 
between the predicted and actual values of the target variable. 

The additional pairs of target variables related to every vehicle were then accounted for as 
'Vehicle#iSourceType' and 'Vehicle#iModelYear' (where i iterates from 0 to 5), and the vehicles 
were sorted for each household by source type (passenger cars were ranked before passenger 
trucks) and then by model year (new vehicles were ranked before old vehicles) so that the 
iterations represent the vehicle ownership characteristics (lighter and newer vehicles were 
predicted before heavier and older vehicles). The team iteratively incorporated these pairs into 
the analysis, using the previous features (number of children, number of adults, household 
income and number of vehicles) and target variable pairs (the source type and model year of 
the last vehicle) as inputs. 
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For each iteration, the feature importance results of the input variables were derived based on 
the current target variable pair (source type and model year) with a MultiOutputRegressor 
wrapper around the DecisionTreeRegressor model (which fits one regressor per target and 
combines their results to efficiently model the multiple-output problem), and the 
permutation_importance function (from the scikit-learn library) was used to provide the 
permutation importance by input variable. The parameter of n_repeats was set to 100, which 
controls the number of times the model performance is evaluated with the permuted feature 
values. A higher number of repeats provides a more accurate estimate of feature importance, 
as it averages the results over multiple permutations. Although increasing n_repeats also 
increases the computational time required for the calculation, it is a choice of balance between 
the need for accuracy vs. computational efficiency. The value of 10 for n_repeats is widely 
considered a reasonable choice (Fisher, et al., 2019), as it provides a good trade-off between 
accuracy and computation time, and the team used a larger value of 100 to provide more stable 
results. The testing of n_repeats parameter from 10 to 100 at intervals of 10 demonstrate 
almost the same results, and it was indicated that the model's feature importance results are 
stable and robust (the chosen value of n_repeats is large enough to provide reliable estimates 
of feature importance). The results of the permutation importance assessment are presented in 
Table 7. 

The team also used the Random Forest Regressor to compute the feature importance results, 
which is an ensemble learning method that constructs multiple decision trees during training 
and outputs the average prediction of the individual trees. It offers several advantages, such as 
improved accuracy and robustness compared to a single decision tree, and the ability to handle 
missing data and overfitting (Breiman, 2001). The feature importance in a Random Forest 
model are calculated by averaging the impurity reduction of each feature across all trees in the 
forest. Impurity reduction is a measure of how much a feature contributes to improving the 
prediction when used in a split (Breiman, et al., 1984). This method provides a more stable and 
reliable estimate of feature importance results compared to a single decision tree, as it 
accounts for interactions between features and variations in the dataset. 

The Random Forest Regressors were employed in the same way with the decision tree 
regressors (prediction of number of vehicles first, and then iterative prediction of each vehicle), 
and MultiOutputRegressor was also used to handle a pair of target variables at a time. The 
results of the feature importance assessment by Random Forest are shown in Table 8. 

The feature importance results from both regressors were normalized to the scale from 0 to 
100, as shown in Table 9, and the normalized importance results were manually examined to 
assign the weight for pairing the households (Euclidean distances). It was indicated that 
household income has larger importance when it comes to more vehicles owned, and given 
that most households do not possess more than 3 vehicles, the weights by input variable were 
determined based on iterations from #1 to #5, as shown in Table 10.
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Table 7. Feature importance of Decision Tree Regressor. 

Iteration 
Number of 

Children 
Number of 

Adults 
Household 

Income 
Ethnic 
Group 

Number of 
Vehicles 

RMSE 

# of Paired 
Vehicle 

0.001 0.046 0.062 0.012 N/A 0.7 

1 0.003 0.005 0.028 0.019 0.075 5.5 

2 0.006 0.012 0.024 0.021 0.043 5.0 

3 -0.001 0.012 0.010 0.000 0.027 5.5 

4 0.009 -0.010 -0.014 0.012 0.025 5.5 

5 -0.008 -0.002 0.033 0.020 0.029 4.6 

6 -0.005 0.001 0.203 0.091 -0.005 2.8 

Table 8. Permutation importance of Random Forest Regressor. 

Iteration 
Number of 

Children 
Number of 

Adults 
Household 

Income 
Ethnic 
Group 

Number of 
Vehicles 

RMSE 

# of Paired 
Vehicle 

0.063 0.511 0.355 0.071 N/A 0.7 

1 0.038 0.024 0.105 0.038 0.295 5.5 

2 0.033 0.033 0.067 0.036 0.044 4.7 

3 0.027 0.035 0.081 0.036 0.019 4.5 

4 0.017 0.024 0.065 0.028 0.015 4.0 

5 0.012 0.016 0.038 0.021 0.013 3.4 

6 0.007 0.011 0.039 0.012 0.001 2.3 
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Table 9. Normalized importance results by iteration. 

Regressor Iteration 
Number of 

Children 
Number of 

Adults 
Household 

Income 
Number of 

Vehicles 
Ethnic Group 

Random Forest Paired Vehicle 12.4 100.0 69.6 N/A 13.8 

Random Forest 1 12.8 8.2 35.5 100.0 13.0 

Random Forest 2 49.5 49.2 100.0 65.0 54.0 

Random Forest 3 32.8 42.9 100.0 23.7 44.1 

Random Forest 4 26.5 37.3 100.0 22.5 42.7 

Random Forest 5 31.3 42.4 100.0 35.3 55.8 

Random Forest 6 16.8 27.5 100.0 1.3 29.3 

Decision Tree Paired Vehicle 2.3 74.3 100.0 N/A 19.1 

Decision Tree 1 3.9 6.5 36.5 100.0 25.2 

Decision Tree 2 13.9 29.2 57.2 100.0 48.5 

Decision Tree 3 5.2 45.7 37.5 100.0 0.4 

Decision Tree 4 34.3 39.0 55.0 100.0 47.4 

Decision Tree 5 24.9 6.6 100.0 87.4 58.6 

Decision Tree 6 2.2 0.5 100.0 2.6 44.8 

Table 10. Average importance results and weights assigned. 

Variable 
Average 

Importance 
Weight Note 

Number of 
Children 

20.8 0.1 
Average for the iterations targeting the number of 

paired vehicles and the iterations from #1 to #5. 

Number of Adults 40.1 0.2 
Average for the iterations targeting the number of 

paired vehicles and the iterations from #1 to #5. 

Household 
Income 

74.3 0.35 
Average for the iterations targeting the number of 

paired vehicles and the iterations from #1 to #5. 

Number of 
Vehicles 

73.4 0.35 Average for the iterations from #1 to #5. 
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Appendix D: Relative Mileage Accumulative Rates 

This research adopted the RMAR from the MOVES2014 model (U.S. EPA, 2016), which was 
derived from the VMT distributions from the NHTSA 2001 survey (NHTSA). The regressed model 
of VMT prediction by vehicle age for passenger cars and for light duty trucks were extracted, 
and the mileage for ages of 26 to 30 for passenger cars were extrapolated. 

The linear relationship between VMT and vehicle age for passenger cars are shown in Equation 
(5) and Equation (6). 

𝑉𝑀𝑇𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑐𝑎𝑟𝑠 = A𝑃𝐶 × (Age)3 + B𝑃𝐶 × (Age)2 + C𝑃𝐶 × Age + 𝐷𝑃𝐶  (5) 

𝑉𝑀𝑇𝐿𝑖𝑔ℎ𝑡 𝑡𝑟𝑢𝑐𝑘𝑠 = {
A𝐿𝑇 × (Age)3 + B𝐿𝑇 × (Age)2 + C𝐿𝑇 × Age + 𝐷𝐿𝑇 𝐴𝑔𝑒 ≤ 27

6,648 27 ≤ 𝐴𝑔𝑒 ≤ 36
 (6) 

where the coefficients are as follows in Table 11. 

Table 11. Coefficients for VMT estimates from NHTSA report (NHTSA, 2006). 

Scenario 
Number of 

MOVES-Matrix Links 

A𝑃𝐶  0.3672131 

B𝑃𝐶  -13.21949 

C𝑃𝐶  -232.8491 

𝐷𝑃𝐶  14476.36 

A𝐿𝑇 0.6806403 

B𝐿𝑇 -22.84481 

C𝐿𝑇 -238.5518 

𝐷𝐿𝑇 16345.32 

Note the NHTSA vehicle age starts from 1 instead of 0, and the estimated VMT were adjusted 
accordingly to be converted to MOVES vehicle age. The RMAR for passenger cars were further 
adjusted to 88.5 percent to accommodate the lower mileage for new passenger cars. The RMAR 
used in this research is shown in Table 3 in the context. Please note the team did not find the 
RMAR values in the MOVES2014 and MOVES3 database, and the RMAR values were derived 
based on the methodology provided in EPA’s vehicle population and activity report (U.S. EPA, 
2016).  
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Appendix E: Synthetic Fleet Ownership (Vehicle Counts) 

This appendix provides the number of vehicles owned by all synthetic households across the 
1,000 primary iterations, as shown in Table 12. 

Table 12. Synthetic fleet ownership results. 

Source Type 
Vehicle Age 

ID 
Average Count 2.5 Percentile of Counts 

97.5 Percentile of 
Counts 

21 9 161,480 161,029 161,890 
21 10 155,253 154,824 155,652 
21 11 135,469 135,080 135,831 
21 12 143,599 143,224 143,989 
21 13 120,033 119,718 120,415 
21 14 148,970 148,549 149,366 
21 15 153,830 153,402 154,237 
21 16 140,473 140,087 140,862 
21 17 123,469 123,094 123,822 
21 18 101,340 101,025 101,686 
21 19 99,830 99,499 100,150 
21 20 103,006 102,658 103,336 
21 21 86,493 86,189 86,790 
21 22 87,113 86,802 87,413 
21 23 70,182 69,905 70,444 
21 24 60,335 60,094 60,570 
21 25 57,647 57,410 57,900 
21 26 46,509 46,293 46,732 
21 27 50,476 50,251 50,710 
21 28 32,161 31,966 32,359 
21 29 28,695 28,519 28,869 
21 30 84,858 84,568 85,169 
31 9 106,384 106,072 106,709 
31 10 104,047 103,721 104,381 
31 11 103,118 102,782 103,432 
31 12 82,171 81,880 82,462 
31 13 58,830 58,605 59,071 
31 14 117,314 116,991 117,653 
31 15 131,837 131,482 132,193 
31 16 117,863 117,506 118,196 
31 17 118,230 117,883 118,589 
31 18 113,260 112,887 113,598 
31 19 108,795 108,469 109,121 
31 20 111,283 110,944 111,621 
31 21 68,151 67,875 68,419 
31 22 64,190 63,940 64,454 
31 23 55,113 54,890 55,336 
31 24 42,542 42,351 42,747 
31 25 35,936 35,745 36,125 
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Source Type 
Vehicle Age 

ID 
Average Count 2.5 Percentile of Counts 

97.5 Percentile of 
Counts 

31 26 28,486 28,318 28,663 
31 27 21,545 21,394 21,703 
31 28 16,091 15,971 16,213 
31 29 11,119 11,007 11,230 
31 30 29,076 28,893 29,244 

Total All 3,836,602 3,836,204 3,836,965 
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Appendix F: Link-by-link Emission Differences by Hour 

This appendix presents the link-by-link results of the emission differences (between the 
synthetic fleet vs. the county-based approach) by hour. The average differences are presented 
in Figure 19 through Figure 42, the CIs are presented in Figure 43 through Figure 66, and the 
biased links (with both CI bounds negative or positive) are shown in Figure 67 through Figure 
90. 

 

Figure 19. Link-by-link average differences between the scenarios, 12 AM to 1AM. 
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Figure 20. Link-by-link average differences between the scenarios, 1 AM to 2 AM. 

 

Figure 21. Link-by-link average differences between the scenarios, 2 AM to 3 AM. 
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Figure 22. Link-by-link average differences between the scenarios, 3 AM to 4 AM. 

 

Figure 23. Link-by-link average differences between the scenarios, 4 AM to 5 AM. 
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Figure 24. Link-by-link average differences between the scenarios, 5 AM to 6 AM. 

 

Figure 25. Link-by-link average differences between the scenarios, 6 AM to 7 AM. 
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Figure 26. Link-by-link average differences between the scenarios, 7 AM to 8 AM. 

 

Figure 27. Link-by-link average differences between the scenarios, 8 AM to 9 AM. 
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Figure 28. Link-by-link average differences between the scenarios, 9 AM to 10 AM. 

 

Figure 29. Link-by-link average differences between the scenarios, 10 AM to 11 AM. 
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Figure 30. Link-by-link average differences between the scenarios, 11 AM to 12 PM. 

 

Figure 31. Link-by-link average differences between the scenarios, 12 PM to 1 PM. 

12:00 PM
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Figure 32. Link-by-link average differences between the scenarios, 1 PM to 2 PM. 

 

Figure 33. Link-by-link average differences between the scenarios, 2 PM to 3 PM. 
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Figure 34. Link-by-link average differences between the scenarios, 3 PM to 4 PM. 

 

Figure 35. Link-by-link average differences between the scenarios, 4 PM to 5 PM. 
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Figure 36. Link-by-link average differences between the scenarios, 5 PM to 6 PM. 

 

Figure 37. Link-by-link average differences between the scenarios, 6 PM to 7 PM. 
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Figure 38. Link-by-link average differences between the scenarios, 7 PM to 8 PM. 

 

Figure 39. Link-by-link average differences between the scenarios, 8 PM to 9 PM. 
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Figure 40. Link-by-link average differences between the scenarios, 9 PM to 10 PM. 

 

Figure 41. Link-by-link average differences between the scenarios, 10 PM to 11 PM. 
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Figure 42. Link-by-link average differences between the scenarios, 11 PM to 12 AM. 

 

Figure 43. Link-by-link CIs of difference between the scenarios, 12 AM to 1 AM. 

12:00 AM
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Figure 44. Link-by-link CIs of difference between the scenarios, 1 AM to 2 AM. 

 

Figure 45. Link-by-link CIs of difference between the scenarios, 2 AM to 3 AM. 
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Figure 46. Link-by-link CIs of difference between the scenarios, 3 AM to 4 AM. 

 

Figure 47. Link-by-link CIs of difference between the scenarios, 4 AM to 5 AM. 
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Figure 48. Link-by-link CIs of difference between the scenarios, 5 AM to 6 AM. 

 

Figure 49. Link-by-link CIs of difference between the scenarios, 6 AM to 7 AM. 
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Figure 50. Link-by-link CIs of difference between the scenarios, 7 AM to 8 AM. 

 

Figure 51. Link-by-link CIs of difference between the scenarios, 8 AM to 9 AM. 
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Figure 52. Link-by-link CIs of difference between the scenarios, 9 AM to 10 AM. 

 

Figure 53. Link-by-link CIs of difference between the scenarios, 10 AM to 11 AM. 
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Figure 54. Link-by-link CIs of difference between the scenarios, 11 AM to 12 PM. 

 

Figure 55. Link-by-link CIs of difference between the scenarios, 12 PM to 1 PM. 

12:00 PM
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Figure 56. Link-by-link CIs of difference between the scenarios, 1 PM to 2 PM. 

 

Figure 57. Link-by-link CIs of difference between the scenarios, 2 PM to 3 PM. 
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Figure 58. Link-by-link CIs of difference between the scenarios, 3 PM to 4 PM. 

 

Figure 59. Link-by-link CIs of difference between the scenarios, 4 PM to 5 PM. 
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Figure 60. Link-by-link CIs of difference between the scenarios, 5 PM to 6 PM. 

 

Figure 61. Link-by-link CIs of difference between the scenarios, 6 PM to 7 PM. 
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Figure 62. Link-by-link CIs of difference between the scenarios, 7 PM to 8 PM. 

 

Figure 63. Link-by-link CIs of difference between the scenarios, 8 PM to 9 PM. 
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Figure 64. Link-by-link CIs of difference between the scenarios, 9 PM to 10 PM. 

 

Figure 65. Link-by-link CIs of difference between the scenarios, 10 PM to 11 PM. 
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Figure 66. Link-by-link CIs of difference between the scenarios, 11 PM to 12 AM. 

 

Figure 67. Links with both CI bounds negative or positive, 12 AM to 1 AM. 

12:00 AM
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Figure 68. Links with both CI bounds negative or positive, 1 AM to 2 AM. 

 

Figure 69. Links with both CI bounds negative or positive, 2 AM to 3 AM. 
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Figure 70. Links with both CI bounds negative or positive, 3 AM to 4 AM. 

 

Figure 71. Links with both CI bounds negative or positive, 4 AM to 5 AM. 
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Figure 72. Links with both CI bounds negative or positive, 5 AM to 6 AM. 

 

Figure 73. Links with both CI bounds negative or positive, 6 AM to 7 AM. 
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Figure 74. Links with both CI bounds negative or positive, 7 AM to 8 AM. 

 

Figure 75. Links with both CI bounds negative or positive, 8 AM to 9 AM. 
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Figure 76. Links with both CI bounds negative or positive, 9 AM to 10 AM. 

 

Figure 77. Links with both CI bounds negative or positive, 10 AM to 11 AM. 
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Figure 78. Links with both CI bounds negative or positive, 11 AM to 12 PM. 

 

Figure 79. Links with both CI bounds negative or positive, 12 PM to 1 PM. 
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Figure 80. Links with both CI bounds negative or positive, 1 PM to 2 PM. 

 

Figure 81. Links with both CI bounds negative or positive, 2 PM to 3 PM. 
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Figure 82. Links with both CI bounds negative or positive, 3 PM to 4 PM. 

 

Figure 83. Links with both CI bounds negative or positive, 4 PM to 5 PM. 
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Figure 84. Links with both CI bounds negative or positive, 5 PM to 6 PM. 

 

Figure 85. Links with both CI bounds negative or positive, 6 PM to 7 PM. 
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Figure 86. Links with both CI bounds negative or positive, 7 PM to 8 PM. 

 

Figure 87. Links with both CI bounds negative or positive, 8 PM to 9 PM. 
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Figure 88. Links with both CI bounds negative or positive, 9 PM to 10 PM. 

 

Figure 89. Links with both CI bounds negative or positive, 10 PM to 11 PM. 
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Figure 90. Links with both CI bounds negative or positive, 11 PM to 12 AM. 

12:00 PM
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